

Benha University Faculty of Engineering Shoubra

Antennas & Wave Propagation

Electrical Eng. Dept. 4th year communication 2016-2017

Sheet (8)

- 1. Design a four –element ordinary end fire array with the elements placed along the Z-axis a distance d apart with the maximum of the array factor directed toward $\theta=0^{\circ}$. for a spacing of $d=\lambda/2$ between the elements find the
 - (a) Progressive phase excitation between the elements to accomplish this.
 - (b) Angles (in degrees) where the nulls of the array factor occur.
 - (c) Angles (in degrees) where the maximum of the array factor occur.
 - (d) Beam width (in degrees) between the first nulls of the array factor.
 - (e) Directivity (in dB) of an array factor.
- **2.** Arrays of 10 isotropic elements are placed along z-axis a distance $d=\lambda/4$ apart. Assuming uniform distribution. Find for both broadside and ordinary end-fire cases the following:
 - (a) Progressive phase (in degrees).
 - (b) First side lobe level beam width.
 - (c) Directivity (in dB).
- 3. A uniform of 20 isotropic elements is placed along z-axis a distance $\lambda/4$ apart with a Progressive phase shift of " β ". Calculate " β " (give the answer in radians) for the following array types:
 - (a) Broadside.
 - (b) End-fire with maximum at $\theta=0^{\circ}$.
 - (c) End-fire with maximum at θ =180°.
 - (d) Phased array with maximum aimed at θ =30°.
- **4.** For a uniform broadside linear array of 10 isotropic elements, determine the approximate directivity (in dB) when the spacing between the element is
 - (a) $\lambda/4$ (b) $\lambda/2$ (c) $3 \lambda/4$ (d) λ .

Dr. Moataz Elsherbini Eng.Shaimaa Ezzat